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The multiscale self-adaptivity of Voronoi basis functions is currently proving to
be useful for the simulation of complex fluid systems involving structures on
a number of distinct lengthscales. In this paper, we explore the possibility of
extending the use of such multiscale basis functions to the framework of density
functional theoretic electronic structure computations.
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1. INTRODUCTION

Electronic structure calculations based on density functional theory (DFT)
and the Kohn–Sham (KS) equations (1) have enjoyed great success in a wide
range of applications over recent years. (2–4) Several different techniques
have been developed to reduce the high computational cost of such simu-
lations. They can be classified as standard matrix diagonalisations, steepest
descent methods and dynamic minimization techniques such as the Car–
Parrinello method. (5, 6)

All of these methods make use of plane waves (PW) to expand the KS
orbitals. Plane waves have several advantages when computing the differ-
ent terms of the KS effective potentials. First, plane waves are independent
of atomic-position, so that the forces acting on the ions are simple to



handle; using fast-Fourier transform (FFT) techniques, it is straightfor-
ward to compute convolution integrals while integrals over the wave func-
tions (scalar products) reduce to simple multiplications of the expansion
coefficients. However, there are disadvantages as well in using plane waves,
because a very large number of them are needed to resolve the rapid varia-
tions of the electron density around the nuclei. In a PW expansion it is
quite hard to increase the resolution locally and the computational resources
are deployed inefficiently.
Several modifications of the algorithms have been proposed recently,

with the aim of increasing the resolution of the expansion of the orbitals
only in local regions around the positively charged nuclei, primarily using
Gaussian basis functions together with standard PWs to enlarge the
expansion basis. However, some rather more sophisticated techniques have
also been advocated, including a number of real-space finite-difference,
finite-element and adaptive mesh methods (see, for example, the interesting
papers by Gygi (7, 8) and the review by Beck (9)) and the divide-and-conquer
approach based on localised basis functions by Yang. (10) Some of these
multiscale solvers are computationally competitive with the most efficient
plane wave methods, while conferring various additional algorithmic bene-
fits owing to their local features.
A similar need for multiscale algorithms is encountered in an at first

sight far removed field of research, namely the modelling and simulation of
non-Newtonian dense colloidal suspensions, part of the modern science of
soft condensed matter. In this case, the Navier–Stokes equations are used
to describe the single component Newtonian solvent surrounding the
colloidal particles; the discrete grid must be able to resolve the fluid length
scales around the colloidal particles with much better accuracy than far
away from them to ensure proper representation of hydrodynamic and
lubrication interactions. The need for consistent multiscale methods is
exacerbated in more complex fluid systems, for example ones in which
there may be colloids and polymers, and a fortiori for such multicompo-
nent fluids flowing in porous media, a common real world situation. The
problem we encounter in complex fluid systems of large spatial scale
separation between the background scale and the colloidal particles is quite
reminiscent of the situation in electronic structure calculations, where one
encounters a similar scale separation between the electronic fluid and the
heavy nuclei. Any simulation technique must be able to bridge several
orders of magnitude in length scales to reliably handle such calculations.
Brute force is always one route, but it rapidly becomes computationally
overwhelming.
For the case of complex fluids a multiscale ‘‘dissipative particle dynamics’’

technique based on the Voronoi tessellation (11, 12) has been recently been
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introduced. (13–15) Here a Lagrangian scheme based on an adaptive Voronoi
tessellation is used to resolve space length-scales non-uniformly.
The aim of the present paper is to draw parallels between electronic

structure calculations and complex colloidal fluids, in the belief that some
knowledge from complex fluid dynamics can be exported to the quantum
many-body framework. In this picture, the KS orbitals become an electronic
multi-component fluid composed of many separate single electron fluids
which interact via the KS potential.
In such an electronic fluid, the ions composed of the nuclei and the

core electrons can be interpreted as ‘‘colloidal particles’’ interacting,
through the Hellmann–Feynman electronic force, with the multi-compo-
nent electronic fluid, with the appropriate pseudo-potentials for nucleus
plus core electrons. The advantage of this ‘‘fluid form’’ expansion of the
wave function is that the discretisation is self-adaptive and may even
provide an optimal representation of electronic orbitals.

2. DENSITY FUNCTIONAL THEORY

The Kohn–Sham (KS) equations allow the reduction of the dimen-
sionality of the general wave function Y on a phase space of dimensionality
3N to N wave functions Yi in three dimensions coupled by an effective
potential Veff(r)=Vext(r)+VHT[n(r)]+Vxc[n(r)], given in terms of the
external potential Vext, the Hartree potential VHT(r)=> n(r)

|r− r Œ| dr − and the
exchange Vxc potential, which are functionally dependent on the electron
density n(r). (1) These equations have the following form:

3 − (
2

2m
N2+

dVeff

dn(r)
4 Yi=eiYi (1)

The computation of the ground electronic state requires several
diagonalisation calculations until the variation of the energy with respect to
the total electronic density is zero. If the ion dynamics is added, then for
each functional minimization, the ions are moved and the ground state
computed again. The forces due to the electronic degrees of freedom are
calculated using the Hellmann–Feynman theorem:

FI=−
“E
“RI
=OY|

“H
“RI
|YP (2)

where RI is the position of the Ith ions comprising the nucleus and core
electrons of the chosen atom.
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Another possibility to obtain the ground state is to use the Schrödinger
equation in imaginary time

(Ẏi=−HYi (3)

where the dot indicates the total derivative. Due to the quicker exponential
decay of the higher energy states, the long time solution isolates the ground
state while the excited states are filtered out. This method is formally
equivalent to steepest descent (SD) minimisation with dE

dYg
i (r, t)
=2HYi. The

solution of the imaginary time Schrödinger equation gives a decaying
dynamics which is different from the solution of the real time Schrödinger
equation describing all the excited states.
A further technique for electronic structure minimisation is the Car–

Parrinello (CP) (5) method which eliminates the need for eigenvalue calcula-
tions and replaces Eq. (1) with a fictitious Newtonian dynamics which is
equivalent to the KS equations (1) close to convergence and where the ion
dynamics is considered at the same time as electronic energy minimisation.
Each of these methods requires a series expansion of the single particle

wave functions. As discussed above, often a plane wave expansion is used.
However, when the electrons are highly localised, the plane wave expansion
engenders severe memory requirements on the computational hardware.
Alternative approaches have been proposed over the years. One possible
solution is to use Gaussian walkers to approximate the electronic wave
function, an approach which meets with a problem of ill-posedness if two
or more Gaussians overlap. This is equivalent to using a basis with parallel
and therefore degenerate functions. Certain other methods use a hybrid
system in which the total density is expanded in both plane waves and
Gaussian walkers so as to simplify the calculation of the effective potential. (16)

Given N atoms and M basis functions, to expand the orbitals the KS
method is computationally O(NM3), with O(M3) being the time for the
diagonalisation of Eq. (1) for any orbital; the SD method requires O(NM2)
to compute the action of the Hamiltonian on the wave-functions and
O(N2M) for the orthonormalisation, but can be optimised in O(NM+N2M
+NM log(M)), so that the term O(N2M) dominates; the CP method has
computational cost O(N3) due to the delocalised nature of plane wave
expansions, reorthogonalisation of the orbitals being computationally very
expensive. (6)

3. QUANTUM WAVE PACKETS

The hydrodynamic formulation of a quantum system is obtained
by simply rewriting the general wave function in the eikonal form
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Y(r, t)=R(r, t) e iS(r, t)/( with R and S real valued functions. By inserting
this in the time dependent Schrödinger equation and separating real and
imaginary parts, we find

(
“R
“t
=−

(
2

2m
12
(
NR·NS+

1
(
RN2S2 (4)

−R
“S
“t
=−

(
2

2m
1N2R− 1

(
2 R(NS)

22+VR (5)

Multiplying both sides of (4) by R and both sides of (5) by N and using the
notation r(r, t)=R(r, t)2 and v(r, t)=NS(r, t)/m, we have that

1 “
“t
+v ·N2 r=dr

dt
=−rN · v (6)

1 “
“t
+v ·N2 v=dv

dt
=−N(Q+V) (7)

where Q[r]=− (
2

2m
1
R N

2R=− (
2

2m r
−1/2N2r1/2=− (

2

4m (
N2r
r −

1
2
(Nr)2

r2
). The time

dependent quantum potential Q is a special feature of the quantum system
and vanishes in the limit (Q 0, when the dynamics reduces to classical
dynamics governed by the classical potential V. Equations (6) and (7) cor-
respond to an ideal (dissipationless) compressible fluid, and are therefore
amenable to the wide arsenal of numerical methods for studying fluid flow.
In particular, we shall consider so-called ‘‘Lagrangian’’ techniques, based
on a particle representation. (17)

The density r(r, t) and velocity v(r, t) fields representing the initial
state of the wave function Y are approximated by M point particles with
associated trajectory rk(t), mass m, velocity vk(t)=v(rk, t) and density
rk(t)=r(rk, t), k=1,..., M. The time evolution is governed by Eqs. (6)
and (7) and the kinematic condition

dr
dt
=v (8)

The gradient and further derivatives of the density r(r, t) and velocity
v(r, t) fields are computed via a dynamic local interpolation over the point
particles k. (18) At any time, the quantity |Y(r, t)|2 can be computed via the
point-like information rk, k=1,..., M.
The Lagrangian fluid formalism is ideally suited to adaptive mesh

methods of solution, but it does not allow a straightforward calculation
of integrals involving the orbitals. In fact, to do this one would have to
reconstruct the phase S from the gradient of the phase. To avoid this extra
work, we evolve the phases instead of the velocity v itself:
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“S
“t
=−(Q+V)+

1
2m
(NS)2 (9)

v=
NS
m

(10)

The quantum wave packet Eqs. (6), (7) are derived directly from the
real time Schrödinger equation; therefore they give the time dependent
dynamics of the wave function. In order to obtain the ground state we
must add a friction term −gv to the velocity equation (7). (19) Doing that,
the time derivative of the gradient of the wave function is zero and the
phase stationary. For the phase evolution the same friction term reads −gS.

4. THE QUANTUM MECHANICAL EQUATIONS IN FLUID FORM

In this section we shall make use of the aforementioend analogy
between electronic and colloidal fluids to recast the Kohn–Sham equations
in fluid form. We wish to emphasize that, being based on the Kohn–Sham
equations, our formalism shares the standard limitations inherent with the
Born–Oppenheimer approximation, that is a clearcut scale separation
between electronic and nuclear degrees of freedom. As a result it cannot be
expected to describe non-adiabatic events associated with crossing of
energy levels, such as cluster-cluster scattering.
The fluid form of the KS equations for N atoms with trajectories

RI(t), i=1,..., Nocc, single-particle orbitals Y (i)(r, t), and k=1,..., M point
particles, for any electronic orbital can be discretised on a Lagrangian finite
volume Voronoi tessellation. (13–15) Given a set of points {r1,..., rM}, a parti-
tion of the space assigning every point to its nearest site is called a Voronoi
tessellation. We can define the characteristic function for the partition k (15)

H tk(r)=<M
l=1 H((x−

rk(t)+rl(t)
2 ) · ekl) where H is the one-dimensional Heavi-

side function with derivative d(x) and ekl=
rk − rl
|rk −rl|
. Using the characteristic

function of the Voronoi tessellation H tk(r) we can coarse-grain the elec-
tronic fluids in the same manner as is done in complex fluid is by defining

r (i)k (t)=
1
Vk

F r (i)(r, t) H tk(r) dr (11)

U (i)
k (t)=

1
Vk

F v (i)(r, t) H tk(r) dr (12)

S (i)k (t)=
1
Vk

F S (i)(r, t) H tk(r) dr (13)
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where Vk is the volume of the partition k. The Lagrangian dynamics of the
tessellation is reflected by the time dependence of the characteristic function.
The Voronoi centers rk move according to the kinematic condition ṙk=Uk
where Uk=

1
M; i U (i)

k is the average velocity of the total electron cloud in
the volume k.
Writing the time derivatives as ṙ (i)k , U̇ (i)

k we can obtain the temporal
evolution of the system. For the time dependence of the density we have
that

ṙ (i)k =
1
Vk
5−V̇kr (i)k +F (“tr (i)H tk+r (i)Ḣ tk) dr6 (14)

The first term together with the second integrand on the right hand side of
this equation arise due to volume variations, which are intrinsic to the
method and have previously been derived explicitly in the complex fluid
case without any particular difficulties. (15) The first term V̇k can be
computed as

V̇k=C
l
V̇kl (15)

V̇kl=−
Uk+Ul
2
· ekllkl+lklLkl · ėkl (16)

where l are the neighbouring volumes, lkl is the surface area between k
and l, Lkl=(lCM−

rk − rl
2 ) and lCM is the position of the centre of mass of

the surface between k and l. The third term yields

F r (i)Ḣ tk dr=C
l
Or (i)Pkl V̇kl (17)

where O ·Pkl is the average on the surface kl. The average can be taken by
using a linear interpolation as Or (i)Pkl=

1
2 (r

(i)
k +r

(i)
l ).

The second term in Eq. (13) depends on Eq. (6) and is transformed
using Gauss’s theorem on the volume k as

1
Vk

F “tr (i)H tk dr=
1
Vk

C
l
lkl Or (i)v (i)Pkl · ekl; (18)

ekl (defined before) is normal to that surface (a Voronoi property). The
velocity equation follows the same derivation as for the density, and we
therefore omit it here.
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The final set of differential equations for the electronic fluid is given
by

drk
dt
=Uk (19)

dr (i)k
dt
=
1
Vk

C
l

5lkl
r (i)k v (i)k +r

(i)
l v (i)l

2
· ekl+

r (i)l −r
(i)
k

2
V̇kl6 (20)

dS(i)k
dt
=−Qk[r (i)(r, t)]−Veff+

1
2
m(U(i)k )

−gS (i)k (r, t)+
1
Vk

C
l

S (i)l −S
(i)
k

2
V̇k (21)

U (i)
k =−C

l
lkleklS

(i)
l (22)

d2RI
dt2
=

FI
MI

(23)

k=1,..., M; I=1,..., N; i=1,..., Nocc

where Qk and V
eff
k are the interpolations of the quantum potential Q and

effective potential Veff(r)=Vext(r)+VHT[n(r)]+Vxc[n(r)]+constraints, FI
is the Hellmann–Feynman force (2) due to the electronic structure of the
ions, and

n(r, t)=C
Nocc

i
|Y (i)|2=C

Nocc

i
r (i)(r, t) (24)

is the total density of the electron clouds. The quantum potential is

Q[r (i)]=−
(
2

4m
1N2r (i)
r (i)
−
1
2
(Nr (i))2

(r (i))2
2 (25)

The non-local Hartree–Fock potential

VHF[n(r)]=F
n(r)
|r− r −|

dr − (26)

is computed through the FFT algorithm as a convolution product when the
wave function is expanded in plane waves. The potential Vxc depends on
the exchange and correlation energy approximations used, which is local in
the LDA (local density approximation). In this case it does not introduce
any particular algorithmic problem. The Vext potential is the total external
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potential felt by the electrons due to nuclei plus core electrons, which are
represented as pseudo-ions with particular pseudo-potentials.
During the dynamics the orbitals must remain orthonormal at all

times. This requirement must be imposed at any time step by reorthogo-
nalisation of the orbitals with any orthonormalisation method, such as the
Gram–Schmidt procedure. This is represented by the constraints term in
the potential.
Comparing with the discretisation in terms of walkers as given in the

previous sections, the Voronoi tessellation gives an additional parameter,
the volume. This is a fundamental feature in complex fluid simulations
because we want to compute the fluctuations of the fluid; in the present
quantum fluid context, the volume is used to compute the scalar products
which are space integrals.
We note that the present scheme is directly applicable to time-depen-

dent density-functional calculations by setting the friction coefficient g=0,
since our equations are intrinsically time-dependent, being based on the
time-dependent Kohm–Sham equations. (20)

Before moving to the analysis of the present scheme, it is worth men-
tioning a possible alternative formulation of the ‘‘partition function’’
H tk(x). As previously stated, H

t
k(x) is a characteristic function of the

Voronoi cell associated with the point rk. It is possible to define a smooth
characteristic function f tk(x), which can be thought as a regularisation of
H tk(x), as f

t
k(x)=

g(x− rk)
;l g(x− rl)

, where g(x)=exp(−x2/a2) and a is a scale
length parameter. In the limit aQ 0, f tk reduces to H

t
k, while for a finite

value a each Voronoi cell shares an overlapping region with all its neigh-
bouring cells. (14) The width of the overlap is dependent on a and on the
form of the function g.
This definition of a smooth ‘‘partition function’’ is strongly reminis-

cent of the ‘‘partition function’’ proposed by Yang (10) in his linear scaling
divide-and-conquer method. Having noted the similarity in terms of the
choice of the partition function, we point out that the divide-and-conquer
scheme localises the wave-function around each atom of the molecular
system, and subsequently expands the local wave-function onto a local
basis set. In our case, we use the partition function to provide an expansion
of the electronic fluids directly, therefore our description is entirely based
on the Voronoi tessellation together with the fluid form equations without
any further expansion onto other basis sets.

5. SOLVING THE QUANTUM DISSIPATIVE EQUATIONS

The actual solution of Eqs. (19)–(23) presents a number of technical
challenges, primarily due to the non-locality of the effective potential
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and to the orthogonalisation step, i.e., the calculation of scalar products
> Yg

i Yj dr.
The first, weak, non-locality is given by the high order derivatives of

the quantum potential which require higher order interpolation than that
usually performed in classical fluid mechanics. In fact, the quantum fluid
form of the equations contains third-order spatial derivatives of the
density, while in the Navier–Stokes equations only second order velocity
derivatives are involved.
A second, much stronger, non-locality is given by the Hartree poten-

tial. This involves a spatial integral of the total electronic density or the
equivalent solution of the Poisson problem

N2VHF=n (27)

This is most efficiently handled via the Fast Fourier Transform (FFT).
However, since we are working with an unstructured set of particles, direct
use of Fourier transforms is ruled out. We can use particle-mesh solvers, in
which the Poisson equation is solved on a regular grid (incurring, however,
the loss of adaptability of the total density n) (9) or finite element Poisson
solvers using the existing Delaunay triangulation provided by the Voronoi
tessellation.
The fluid form appears particularly ill-suited to the imposition of

orthogonality. The scalar products

F (r (i)(r, t) r (j)(r, t))1/2 e iS(ij)(r, t)/( dr (28)

where the phase S (ij)=S(i)−S (j), must be computed for any pair i, j.
However, given that we know the volume for any k, a possible discretisa-
tion of the previous integrals is

C
k
(r (i)k r

(j)
k )

1/2 e iS
(ij)
k /(Vk (29)

where Vk is the volume of the kth Voronoi cell. This Riemann approxima-
tion of the integral involves more computational time than the analogue
arising for plane waves, due to the need for numerical evaluations of the
exponentials.
The orthonormalisation step needed to compute integrals of the pre-

vious type do not present any particular problem. For instance, a SHAKE
type of algorithm (21) could be written for the constraints on the variables
S (i)k , r

(i)
k for varying k, i using Eq. (29) as the constraint hyper-surface.
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Fig. 1. The adaptability of the Voronoi tessellation is shown in two-dimensions for ease of
visualisation. The dense regions correspond to the neighbourhood of the ions while the reso-
lution of the inter-ionic regions is coarser.

The Voronoi tessellation used to coarse-grain all the electronic fluids is
less expensive the number of atoms increases, while the Lagrangian struc-
ture of the equations becomes progressively worse. In fact all individual
single orbitals move according to their own dynamics, while the tessellation
is updated with the averages of the electronic fluid velocities. However, if
all the electronic density within the orbitals remains concentrated around
the ions, it is expected that the tessellation will resolve the right length
scales for all the electronic fluids (that is, the electronic orbitals).
Due to high-compressibility, and lack of dissipation, the electronic

fluid might develop sharp features (shock fronts) or even topological sin-
gularities (vortices) which would eventually spoil the single-valuedness of
the phase S. While these effects present a definite challenge to any numeri-
cal methods, we believe the present scheme is relatively well positioned to
handle them successfully, because our technique is naturally adaptive, so
that particles have a built-in tendency to cluster around sharp features of
the fluid flow (see Fig. 1).

6. CONCLUSION

In the present paper, we have derived the fluid form of the Kohn–
Sham equations for the orbitals of a collection of atoms. The ground state
is obtained by adding a friction term to the fluid velocity of the electronic
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cloud. The orbitals are expanded on a self-adaptive Lagrangian Voronoi
tessellation which should naturally cluster around the ions. The common
support for all the orbitals of the Voronoi tessellation is used to compute
the integrals of the scalar products for the orthonormalisation of the wave
functions. The non-local Hartree potential and any other non-local poten-
tial can be solved using the structure of the Delaunay triangulation
underlying the Voronoi tessellation.
One possible advantage of this technique is to resolve different length

scales present in the electronic structure in a uniform and coherent manner.
This means a much smaller number M of basis functions than need to be
used in standard plane wave expansions, significantly reducing the overall
complexity of the problem. Some additional effort would be needed in
order to update the Lagrangian tessellation and to implement periodic
boundary conditions. However, this somewhat complex machinery is
already available for complex fluid simulations (15) and therefore no addi-
tional effort is required to implement it for electronic structure studies.
Inevitably, the final word on the viability of the scheme we have

proposed here must rest with numerical implementations, which we hope
will be carried out in the near future.
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